Pelajaran IPA Fisika tentang Gravitasi

Denny Febiana Nurhidayat
Minggu, 14 Maret 2021

Gravitasi (dari bahasa Latin gravitas 'berat'), adalah fenomena alam di mana semua benda dengan massa atau energi—termasuk planet, bintang, galaksi, dan bahkan cahaya—tarik menarik satu sama lain. 

Di Bumi, gravitasi memberi bobot pada benda-benda fisik, dan gravitasi Bulan menyebabkan pasang surut lautan. Daya tarik gravitasi dari materi gas asli yang ada di Semesta menyebabkannya mulai menyatu dan membentuk bintang dan menyebabkan bintang-bintang berkumpul menjadi galaksi, jadi gravitasi bertanggung jawab atas banyak struktur skala besar di Semesta. Gravitasi memiliki jangkauan tak terbatas, meskipun efeknya menjadi lebih lemah saat objek semakin jauh.


Soal dan Pembahasan secara rumus dan grafik selengkapnya ada di :

Gravitasi Kelas 10


Pertama-tama, Kepler menemukan bahwa “Semua planet bergerak dalam lintasan yang berbentuk elips ketika beredar mengelilingi matahari, yang matahari berada pada salah satu titik fokus elips". Dijelaskan bahwa setiap planet mengelilingi matahari dalam kurva yang disebut elips, dengan matahari fokus terhadap elips. Sebuah elips bukan hanya berbentuk oval, tetapi sebuah kurva yang sangat spesifik dan tepat yang dapat diperoleh seperti dengan menggunakan dua paku payung, satu di setiap fokus, lingkaran tali, dan pensil; secara matematis, hal tersebut adalah tempat kedudukan semua titik yang jumlah jaraknya dari dua titik tetap (fokus) adalah konstan.

Pengamatan kedua Kepler adalah “Suatu gerak edar planet mengitari matahari menjangkau suatu bidang luas segitiga yang sama, dalam jangka waktu yang sama.” menjelaskan bahwa planet-planet tidak mengelilingi matahari dengan kecepatan yang seragam, tetapi bergerak lebih cepat ketika mereka lebih dekat dengan matahari dan lebih lambat ketika mereka lebih jauh dari matahari, persis seperti ini: Misalkan sebuah planet diamati pada titik mana pun. dua kali berturut-turut, katakanlah seminggu terpisah, dan bahwa vektor radius1 ditarik ke planet untuk setiap posisi yang diamati. Busur orbit yang dilalui oleh planet selama seminggu, dan dua vektor radius, mengikat area bidang tertentu, area yang diarsir Jika dua pengamatan serupa dilakukan dalam seminggu terpisah, pada bagian orbit yang lebih jauh dari matahari (tempat planet bergerak lebih lambat), area yang dibatasi sama persis sama seperti pada kasus pertama. Jadi, sesuai dengan hukum kedua, kecepatan orbit setiap planet sedemikian rupa sehingga jari-jarinya "menyapu" area yang sama dalam waktu yang sama.

Akhirnya, hukum ketiga ditemukan oleh Kepler jauh kemudian; hukum ini adalah kategori yang berbeda dari dua lainnya, Hukum III Kepler menyatakan, “Perbandingan kuadrat waktu periode planet dengan pangkat tiga jarak planet tersebut ke matahari adalah sama untuk semua planet.” 

Dari hukum ini ditentukan rumus persamaannya: 

  • T1 kuadrat / T2 kuadrat = R1 pangkat 3 / R2 pangkat 3 
  • T1: periode revolusi planet 1 
  • T2: periode revolusi planet 2 
  • R1: jarak rata-rata planet 1 ke matahari 
  • R2: jarak rata-rata planet 2 ke matahari 

Hukum Kepler dalam kehidupan modern dipakai untuk memperkirakan lintasan planet-planet atau benda luar angka lain yang mengorbit matahari. Misalnya yaitu asteroid atau planet lain yang belum muncul di masa kehidupan Kepler. Hukum Kepler dapat pula diterapkan untuk menghitung gerak bulan yang mengorbit bumi, atau benda baru lainnya yang mengorbit bumi selain bulan.

Perkembangan dinamika

Sementara Kepler menemukan hukum-hukum ini, Galileo mempelajari hukum-hukum gerak.Galileo menemukan fakta yang sangat luar biasa tentang gerak, yang penting untuk memahami hukum-hukum ini. Itulah prinsip inersia—jika ada sesuatu yang bergerak, tanpa ada yang menyentuhnya dan sama sekali tidak terganggu, itu akan berlangsung selamanya, meluncur dengan kecepatan seragam dalam garis lurus.

Newton memodifikasi ide ini, dengan mengatakan bahwa satu-satunya cara untuk mengubah gerakan suatu benda adalah dengan menggunakan gaya. Jika tubuh mempercepat, gaya telah diterapkan dalam arah gerakan. Di sisi lain, jika gerakannya diubah ke arah yang baru, sebuah gaya telah diterapkan ke samping. Dengan demikian Newton menambahkan gagasan bahwa gaya diperlukan untuk mengubah kecepatan atau arah gerak suatu benda. Misalnya, jika sebuah batu diikatkan pada seutas tali dan diputar melingkar, dibutuhkan gaya untuk menahannya agar tetap berada dalam lingkaran. Kita harus menarik talinya. Faktanya, hukumnya adalah bahwa percepatan yang dihasilkan oleh gaya berbanding terbalik dengan massa, atau gaya sebanding dengan massa dikalikan percepatan. Semakin besar suatu benda, semakin kuat gaya yang dibutuhkan untuk menghasilkan percepatan tertentu. (Massa dapat diukur dengan meletakkan batu-batu lain pada ujung tali yang sama dan membuat batu-batu tersebut mengelilingi lingkaran yang sama dengan kecepatan yang sama. Dengan cara ini diketahui bahwa semakin banyak atau sedikit gaya yang diperlukan, semakin besar massa benda yang membutuhkan lebih banyak gaya. gaya.) Ide brilian yang dihasilkan dari pertimbangan ini adalah bahwa tidak ada gaya tangensial yang diperlukan untuk menjaga planet tetap pada orbitnya (malaikat tidak harus terbang secara tangensial) karena planet akan meluncur ke arah itu. Jika tidak ada yang mengganggunya, planet ini akan meledak dalam garis lurus. Tetapi gerak sebenarnya menyimpang dari garis yang akan ditempuh benda jika tidak ada gaya, penyimpangan pada dasarnya tegak lurus terhadap gerak, bukan pada arah gerak. Dengan kata lain, karena prinsip inersia, gaya yang diperlukan untuk mengendalikan gerak planet mengelilingi matahari bukanlah gaya mengelilingi matahari tetapi menuju matahari.

Hukum Gravitasi Newton

Dari pemahamannya yang lebih baik tentang teori gerak, Newton memahami bahwa matahari bisa menjadi tempat duduk atau organisasi kekuatan yang mengatur gerakan planet-planet. Newton membuktikan pada dirinya sendiri (dan mungkin kita akan dapat membuktikannya segera) bahwa fakta bahwa luas yang sama disapu dalam waktu yang sama adalah tanda yang tepat dari proposisi bahwa semua deviasi adalah radial—bahwa hukum luas adalah konsekuensi langsung dari gagasan bahwa semua gaya diarahkan tepat ke matahari.

Selanjutnya, dengan menganalisis hukum ketiga Kepler, dimungkinkan untuk menunjukkan bahwa semakin jauh planet ini, semakin lemah gayanya. Jika dua planet pada jarak yang berbeda dari matahari dibandingkan, analisis menunjukkan bahwa gaya berbanding terbalik dengan kuadrat jarak masing-masing. Dengan kombinasi kedua hukum tersebut, Newton menyimpulkan bahwa pasti ada gaya, berbanding terbalik dengan kuadrat jarak, yang diarahkan pada garis antara dua benda.

Sebagai orang yang sangat menyukai hal-hal umum, Newton tentu saja menduga bahwa hubungan ini berlaku lebih umum daripada sekadar matahari yang memegang planet-planet. Sudah diketahui, misalnya, bahwa planet Jupiter memiliki bulan-bulan yang mengelilinginya sebagaimana bulan-bulan bumi mengelilingi bumi, dan Newton merasa yakin bahwa setiap planet menahan bulan-bulannya dengan kekuatan. Dia sudah tahu tentang kekuatan yang menahan kita di bumi, jadi dia mengusulkan bahwa ini adalah kekuatan universal—bahwa segala sesuatu menarik segala sesuatu yang lain.

Masalah selanjutnya adalah apakah gaya tarik bumi terhadap penduduknya “sama” dengan gaya tariknya terhadap bulan, yaitu berbanding terbalik dengan kuadrat jarak.

Teori Relativitas Umum Albert Einstein

Newton melakukan pekerjaan luar biasa dalam memprediksi gerakan benda dan mengukur gaya gravitasi di tahun 1600-an. Tapi kira-kira 300 tahun kemudian, pemikir hebat lainnya - Albert Einstein - menantang pemikiran ini dengan cara baru dan cara yang lebih akurat untuk memahami gravitasi.

Menurut Einstein, gravitasi adalah distorsi ruangwaktu, struktur alam semesta itu sendiri. Ruang melengkung massal, seperti bola bowling menciptakan lekukan pada seprai, dan objek yang lebih masif seperti bintang atau lubang hitam melengkungkan ruang dengan efek yang mudah diamati di teleskop - pembelokan cahaya atau perubahan gerakan objek yang dekat dengan massa tersebut .

Teori relativitas umum Einstein terkenal membuktikan dirinya dengan menjelaskan mengapa Merkurius, planet kecil yang paling dekat dengan matahari di tata surya kita, memiliki orbit dengan perbedaan yang terukur dari apa yang diprediksi oleh Hukum Newton.

Sementara relativitas umum lebih akurat dalam menjelaskan gravitasi daripada Hukum Newton, perbedaan dalam perhitungan menggunakan keduanya terlihat untuk sebagian besar hanya pada skala "relativistik" - melihat objek yang sangat masif di kosmos, atau kecepatan mendekati cahaya. Oleh karena itu Hukum Newton tetap berguna dan relevan saat ini dalam menggambarkan banyak situasi dunia nyata yang mungkin dihadapi oleh rata-rata manusia.

Gravitasi paling akurat dijelaskan oleh teori relativitas umum (diusulkan oleh Albert Einstein pada tahun 1915), yang menggambarkan gravitasi bukan sebagai gaya, tetapi sebagai konsekuensi dari massa yang bergerak di sepanjang garis geodesik dalam ruang-waktu melengkung yang disebabkan oleh distribusi massa yang tidak merata. Contoh paling ekstrem dari kelengkungan ruang-waktu ini adalah lubang hitam, yang darinya tidak ada apa pun—bahkan cahaya—dapat lolos begitu melewati cakrawala peristiwa lubang hitam itu. Namun, untuk sebagian besar aplikasi, gravitasi didekati dengan baik oleh hukum gravitasi universal Newton, yang menggambarkan gravitasi sebagai gaya yang menyebabkan dua benda tertarik satu sama lain, dengan besarnya sebanding dengan produk massa mereka dan berbanding terbalik dengan kuadrat jarak di antara mereka.

Gravitasi adalah yang terlemah dari empat interaksi fundamental fisika, kira-kira 1038 kali lebih lemah dari interaksi kuat, 1036 kali lebih lemah dari gaya elektromagnetik dan 1029 kali lebih lemah dari interaksi lemah. Akibatnya, ia tidak memiliki pengaruh yang signifikan pada tingkat partikel subatom. Sebaliknya, itu adalah interaksi dominan pada skala makroskopik, dan merupakan penyebab pembentukan, bentuk, dan lintasan (orbit) benda-benda astronomi.

Model fisika partikel saat ini menyiratkan bahwa contoh awal gravitasi di alam semesta, mungkin dalam bentuk gravitasi kuantum, supergravitasi atau singularitas gravitasi, bersama dengan ruang dan waktu biasa, berkembang selama zaman Planck (hingga 10-43 detik setelahnya). kelahiran Semesta), mungkin dari keadaan purba, seperti vakum palsu, vakum kuantum atau partikel virtual, dengan cara yang saat ini tidak diketahui.[5] Upaya untuk mengembangkan teori gravitasi yang konsisten dengan mekanika kuantum, teori gravitasi kuantum, yang memungkinkan gravitasi disatukan dalam kerangka matematika umum (teori segalanya) dengan tiga interaksi fundamental fisika lainnya, adalah bidang penelitian saat ini. .

Isaac Newton membandingkan percepatan bulan dengan percepatan benda di bumi. Percaya bahwa gaya gravitasi bertanggung jawab untuk masing-masing, Newton mampu menarik kesimpulan penting tentang ketergantungan gravitasi pada jarak. Perbandingan ini membawanya untuk menyimpulkan bahwa gaya tarik gravitasi antara Bumi dan benda-benda lain berbanding terbalik dengan jarak yang memisahkan pusat bumi dari pusat benda. Tetapi jarak bukanlah satu-satunya variabel yang mempengaruhi besarnya gaya gravitasi. Pertimbangkan persamaan Newton yang terkenal

F[net] = m • a

Newton tahu bahwa gaya yang menyebabkan percepatan (gravitasi) apel harus bergantung pada massa apel. Dan karena gaya yang bekerja menyebabkan percepatan ke bawah apel juga menyebabkan percepatan ke atas bumi (hukum ketiga Newton), gaya itu juga harus bergantung pada massa bumi. Jadi bagi Newton, gaya gravitasi yang bekerja antara bumi dan benda lain berbanding lurus dengan massa bumi, berbanding lurus dengan massa benda, dan berbanding terbalik dengan kuadrat jarak yang memisahkan pusat-pusat gravitasi. bumi dan benda.

Persamaan Gravitasi UNIVERSAL

Tapi hukum gravitasi universal Newton gravitasi gravitasi di luar bumi. Hukum gravitasi universal Newton adalah tentang universalitas gravitasi gravitasi. Tempat Newton di Gravity Hall of Fame bukan karena penemuan gravitasinya, melainkan karena penemuannya bahwa gravitasi bersifat universal. SEMUA benda menarik satu sama lain dengan gaya tarik-menarik gravitasi. Gravitasi bersifat universal. Gaya tarik gravitasi langsung langsung pada massa kedua benda dan berbanding terbalik dengan kuadrat jarak yang memisahkan pusat-pusatnya.

Sementara sebuah apel mungkin tidak mengenai kepala Sir Isaac Newton seperti yang ditunjukkan oleh mitos, jatuhnya satu apel memang menginspirasi Newton untuk salah satu penemuan hebat dalam mekanika: Hukum Gravitasi Universal. Merenungkan mengapa apel tidak pernah jatuh ke samping atau ke atas atau arah lain apa pun kecuali tegak lurus ke tanah, Newton menyadari bahwa Bumi sendirilah yang bertanggung jawab atas gerakan apel ke bawah.

Dengan berteori bahwa gaya ini harus sebanding dengan massa kedua benda yang terlibat, dan menggunakan intuisi sebelumnya tentang hubungan kuadrat terbalik dari gaya antara bumi dan bulan, Newton mampu merumuskan hukum fisika umum dengan induksi.

Hukum Gravitasi Universal menyatakan bahwa setiap titik massa menarik setiap titik massa lainnya di alam semesta dengan gaya yang menunjuk pada garis lurus antara pusat massa kedua titik, dan gaya ini sebanding dengan massa benda dan berbanding terbalik sebanding dengan pemisahannya Gaya tarik menarik ini selalu mengarah ke dalam, dari satu titik ke titik lainnya. Hukum berlaku untuk semua benda yang bermassa, besar atau kecil. Dua benda besar dapat dianggap sebagai massa seperti titik, jika jarak antara keduanya sangat besar dibandingkan dengan ukurannya atau jika keduanya simetris bola. Untuk kasus ini massa setiap benda dapat direpresentasikan sebagai massa titik yang terletak di pusat massanya.

Jenis Gravitasi

Isaac Newton telah menemukan gravitasi. Dia mengidentifikasinya ketika dia melihat Apel jatuh dari pohon, dan kemudian dia mulai bertanya-tanya tentang kekuatan alam semesta. Ini adalah kekuatan; satu menarik tubuh menuju pusat bumi.

Beberapa jenis gravitasi telah diberikan di bawah ini dengan menjelaskan masing-masing.

Gravitasi Buatan

Gravitasi Buatan adalah ekspansi hipotetis atau pengurangan gravitasi nyata (misalnya, gaya). Sebagian besar, ini digunakan di luar angkasa dan juga di bumi, yang disebut gravitasi bumi. Ini dapat dicapai dengan menggunakan berbagai kekuatan. Misalnya, percepatan linier dan gaya sentripetal.

Gayaberat mikro

Yaitu tekanan yang sejajar dengan permukaan dalam wilayah perpindahan fase, sedangkan, di alam semesta, ia bekerja pada kekosongan yang dipindahkan. Gravitasi ini mendorong benda-benda ke dalam lubang hitam.

Gravitasi kuantum

Bentuk gravitasi yang paling primitif adalah tegangan permukaan yang terlipat. Ini adalah medan gravitasi sebenarnya dari lubang hitam dan dapat disebut sebagai gravitasi bran karena ia mendefinisikan permukaan tanpa volume atau kedalaman intrinsik.

Berat jenis

Yaitu tekanan kontraksi massa, yang sejajar dengan permukaan dalam batas-batas gravitasi permukaan. Ini dimulai pada batas terendah gravitasi permukaan (misalnya, Mantel Bumi).

Gravitasi Kosmik Lemah

Yang menunjukkan fungsi kepadatan ruang-waktu kosmik. Efek geodesik menentukan massa untuk boson lemah karena interaksi parsial ambigu yang diterapkan pada gelembung cakrawala singularitas. Gelembung bidang ini tumpang tindih dan tak terhitung. Interaksi mereka membentuk konstanta kosmologis dan pengubah omega massa yang meremas potensi 417 triliun tahun cahaya menjadi 46,85 Gly.

Gaya Gravitasi Bulan di Bumi

Percepatan gravitasi permukaan Bulan adalah sekitar 1,625 m/s2 dan sebaliknya, sekitar 16,6% dari permukaan bumi atau 0,166 . Di seluruh permukaan, variasi percepatan gravitasi adalah sekitar 0,0253 m/s2, yaitu 1,6% dari percepatan gravitasi. Karena berat selalu secara langsung bergantung pada percepatan gravitasi, partikel di Bulan hanya akan memiliki berat 16,6% (≈ 1/6) dari beratnya di Bumi.

Tag.


gravitasi bumi

gravitasi bumi berapa

hukum gravitasi bumi

nilai gravitasi

satuan gravitasi

contoh gaya gravitasi

persamaan percepatan gravitasi

hukum gravitasi newton

soal essay tentang gravitasi

contoh soal hukum gravitasi newton kelas 10

soal gravitasi kelas 10 dan pembahasannya

soal gravitasi pilihan ganda

contoh soal percepatan gravitasi dan pembahasannya

contoh soal gravitasi geografi

contoh soal gaya gravitasi brainly

pengertian gaya gravitasi dan contohnya

Peta Lokasi Bimbel Jakarta Timur

  1. Matematika
  2. IPA
  3. Fisika
  4. Kimia
  5. Biologi
  6. SD
  7. SMP
  8. SMA
  9. PAT/PAS/UAS
  10. UN/UNBK/USBN
  11. UTS/PTS
  12. Pelajaran IPA Kimia Stoikiometri
  13. Pelajaran Matematika Soal PAT Kelas 8
  14. Pelajaran Matematika Soal PAT Kelas 7
  15. Pelajaran Matematika Soal UAS Kelas 8
  16. Pelajaran Matematika Soal UAS kelas 7
  17. Pelajaran Matematika Soal UAS Kelas 5
  18. Pelajaran Matematika Soal UAS Kelas 6
  19. Pelajaran Matematika Soal UAS Kelas 4
  20. Pelajaran IPA Fisika Suhu Dan Pemuaian
  21. Sistem Persamaan Linear Dua Variabel
  22. Pelajaran IPA Fisika Fluida Statis
  23. Pelajaran Matematika Turunan Fungsi
  24. Gradien dan Persamaan Garis Lurus
  25. Pelajaran Matematika Bangun Ruang Sisi Datar
  26. Pelajaran Matematika Bangun Ruang Sisi Lengkung
  27. Pelajaran Matematika Aritmatika Sosial
  28. Persamaan Dan Pertidaksamaan Linear Nilai Mutlak Satu Variabel
  29. Pelajaran IPA Fisika Vektor dan Skalar
  30. Pelajaran Matematika tentang HIMPUNAN
  31. Pelajaran Matematika Pertidaksamaan Irasional
  32. Sistem Persamaan Linear dan Kuadrat
  33. Pelajaran Matematika Limit Fungsi Aljabar
  34. Pelajaran Matematika Pertidaksamaan Rasional
  35. Pelajaran Matematika Pertidaksamaan Kuadrat
  36. Pelajaran Matematika IPA Satuan Berat dan Massa
  37. Pelajaran Matematika IPA Satuan Ukuran Waktu
  38. Satuan Ukuran Jumlah dan Satuan Pengukuran
  39. Pelajaran IPA Fisika Arus bolak-balik (AC)
  40. Volume dan Luas Permukaan Bangun Ruang Gabungan
  41. Pelajaran Matematika Transformasi Geometri
  42. Pelajaran IPA Klasifikasi Materi dan Perubahannya
  43. Pelajaran Matematika Bentuk Aljabar
  44. Pelajaran Matematika Grafik Fungsi Kuadrat
  45. Pelajaran IPA Fisika Gerak Parabola
  46. Pelajaran IPA Gerak Melingkar Beraturan
  47. Pelajaran Luas Bangun Datar Gabungan Lingkaran
  48. Pelajaran Matematika Fungsi Komposisi Dan Fungsi Invers
  49. Pelajaran IPA Biologi Pewarisan Sifat (Hereditas)
  50. Pelajaran IPA Biologi Klasifikasi Mahluk Hidup
  51. Pelajaran Matematika Unsur unsur lingkaran
  52. Pelajaran IPA Kimia MOLALITAS DAN FRAKSI MOL
  53. Pelajaran IPA Fisika Cahaya Dan Alat Optik
  54. Pelajaran IPA Fisika tentang BUNYI
  55. Pelajaran IPA dan Fisika Getaran Dan Gelombang
  56. Pelajaran Matematika Soal PAT Kelas 9
  57. Pelajaran IPA Fisika Kemagnetan
  58. Pelajaran IPA Fisika tentang TEKANAN
  59. Panjang Busur, Luas Juring Dan Luas Tembereng
  60. Pelajaran Matematika Soal PTS Kelas 8
  61. Pelajaran Matematika Soal Try Out UNBK SMP
  62. Sudut Pusat Dan Sudut Keliling Lingkaran
  63. Pelajaran Matematika Bilangan Bulat
  64. Pelajaran Matematika Limit Trigonometri
  65. Pelajaran Matematika PROGRAM LINEAR
  66. Pelajaran Matematika DIMENSI TIGA
  67. Pelajaran Matematika Soal TryOut USBN untuk SD
  68. Pelajaran Matematika 175 Soal Latihan UN untuk SMP
  69. Pelajaran Matematika Soal UAS Kelas 10
  70. Pelajaran Matematika Soal UAS Kelas 9
  71. Pelajaran IPA Fisika Fluida Dinamis
  72. Pelajaran Matematika Matriks
  73. Pelajaran Matematika Trigonometri Analitika
  74. Pelajaran IPA Fisika Dinamika Rotasi
  75. Pelajaran Matematika Fungsi Trigonometri
  76. Pelajaran Matematika Notasi Sigma
  77. Pelajaran Matematika Logika Matematika
  78. Pelajaran Matematika VEKTOR
  79. Pelajaran Matematika Segiempat dan Segitiga
  80. Pelajaran Matematika Peluang (Probabilitas)
  81. Pelajaran Soal Latihan Ujian Sekolah IPA SD
  82. Rumus Kimia Dan Nomenklatur Senyawa Sederhana
  83. Pelajaran Kimia Larutan Elektrolit dan Reaksi Redoks
  84. Pelajaran IPA Fisika tentang Gravitasi
  85. Hukum Gerak Newton dan Dinamika Partikel
  86. Pelajaran Matematika Kubus dan Balok
  87. Pelajaran Sistem Organisasi Kehidupan Mahluk Hidup
  88. Pelajaran Matematika Pengolahan Data
  89. Pelajaran Matematika Perbandingan Trigonometri
  90. Pelajaran IPA FIsika Energi Dan Daya Listrik
  91. Pelajaran Matematika Bangun Ruang
  92. Pelajaran Matematika FPB dan KPK
  93. Pelajaran Matematika Integral Trigonometri
  94. Pelajaran Matematika Gradien Garis dan Sifat-sifat Gradien
  95. Pelajaran IPA FIsika Listrik Dinamis
  96. Pelajaran Matematika Soal UTS/PTS Kelas 4
  97. Pelajaran Matematika Soal UTS/PTS Kelas 6
  98. Pelajaran Matematika Luas Dan Keliling Lingkaran
  99. Pelajaran Matematika Menghitung Rata-rata (Mean)
  100. Pelajaran Matematika Soal UTS/PTS Kelas 9
  101. Pelajaran IPA Soal UTS/PTS Kelas 8
  102. Pelajaran Matematika Soal UTS/PTS Kelas 8
  103. Pelajaran Matematika Fungsi Kuadrat
  104. Pelajaran Matematika Median Dan Kuartil
  105. Pelajaran Matematika Statistika
  106. Pelajaran IPA Fisika Gerak dan Gaya
  107. Pelajaran IPA Fisika Usaha Dan Pesawat Sederhana
  108. Pelajaran IPA Biologi Sistem Gerak Pada Manusia
  109. Pelajaran IPA Biologi Gerak pada Tumbuhan
  110. Pelajaran Matematika Pembulatan Dan Penaksiran
  111. Pelajaran Matematika Operasi Hitung Pecahan
  112. Pelajaran Matematika Relasi Dan Fungsi
  113. Pelajaran Matematika Persamaan Kuadrat
  114. Pelajaran Matematika Turunan Fungsi Trigonometri
  115. Pelajaran Matematika Logaritma
  116. Cara Menghitung Akar Pangkat Dua Dan Akar Pangkat Tiga
  117. Cara Menghitung Cepat Perkalian Bilangan Belasan
  118. Pelajaran Matematika Fungsi Eksponen
  119. Keindahan Matematika Yang Menakjubkan
  120. Pelajaran Matematika 150 Soal Latihan USBN UNTUK SD
  121. Pelajaran Matematika Operasi Hitung Campuran
  122. Macam-Macam Pola Bilangan
  123. Pelajaran Matematika Cerita Bilangan Bulat
  124. Pelajaran Matematika menghitung persegi
  125. Pelajaran IPA Fisika Listrik Statis
  126. Menentukan Rumus Barisan Aritmatika Bertingkat
  127. Pelajaran Matematika Perpangkatan dan Bentuk Akar
  128. Pelajaran Matematika Teorema Phytagoras
  129. Pelajaran Matematika Soal PAS Kelas 5
  130. Pelajaran Matematika Soal PAS Kelas 4
  131. Pelajaran Matematika Kekongruenan dan Kesebangunan
  132. Sistem Persamaan Linear Tiga Variabel
  133. Perbandingan Senilai dan Perbandingan Berbalik Nilai
  134. Pelajaran Matematika Garis Singgung Lingkaran
  135. Luas dan Keliling Persegi dan Persegi Panjang
  136. Pelajaran Matematika Garis Dan Sudut
  137. Pelajaran IPA Kimia HIDROKARBON
  138. Hubungan Satuan Waktu, Panjang, Berat dan Kuantitas
  139. Pelajaran Matematika Bangun Datar
  140. Pelajaran Matematika Perbandingan Dan Skala
  141. Pelajaran IPA Fisika Suhu Dan Kalor
  142. Pelajaran IPA Fisika BESARAN DAN SATUAN
  143. Pelajaran Matematika DEBIT
  144. Pelajaran IPA Fisika Gerak Lurus
  145. Menghitung Luas Segi-n Beraturan Dengan Trigonometri
  146. Pelajaran Matematika Barisan Dan Deret
  147. Aturan Sinus, Cosinus dan Luas Segitiga