Sistem Persamaan Linear Dua Variabel By Bimbel Jakarta Timur

Radarhot.com
Selasa, 10 September 2024

Sistem Persamaan Linear Dua Variabel By Bimbel Jakarta Timur



Sistem persamaan linear dua variabel by Bimbel jakarta Timur, yang di pelajari kelas 8 sering kita gunakan untuk materi lain baik dalam pelajaran matematika, juga pada pelajaran lain seperti fisika, ekonomi dan lainnya. Sistem persamaan linear dua variabel, tiga variabel digunakan untuk menentukan solusi suatu persamaan

Sistem persamaan linear adalah sekumpulanpersamaan linear (garis lurus) yang terdiri dari beberapa variabel yang dari sistem tersebutdapat ditentukan nilai dari variabel yang diberikan.

Apa sih variabel itu? Variabel atau peubah adalahlambang pengganti suatu bilangan yang belum diketahui nilainya dengan pasti. Nahhhpada sistem persamaan ini kita dapat mengetahui nilai variabel yang diberikan.

Bagaimana caranya? Ada beberapa cara yang bisa digunakan untuk mencari nilai ataupenyelesaian sistem persamaan linear dua variabel.

1. Metode grafik

Cara inidilakukan dengan menggambar masing-masing persamaan yang diberikan pada diagramkartesius hingga ditemukan sebuah titik potong. Titik potong yang didapat ituadalah penyelesaian sistem persamaan tersebut.
Contoh :
Tentukanhimpunan penyelesaian dari sistem persamaan linear berikut :
a. x + y=6 dan 2x + y=8
b. 3x + 2y=12 dan x + 2y=8

Jawab : 
a. Untuk menggambar grafik persamaan linear, kita harus mencari titik potong garis terhadap sumbu x dan sumbu y. Titik potong garis terhadap sumbu x didapat jika nilai y=0, sebaliknya titik potong terhadap sumbu y didapat jika nilai x=0. Setelah didapatkan dua titik potong tersebut maka dapat ditarik garis yang melewati kedua titik.

Garis x + y=6
Titik potong sumbu x ( y=0)
x + 0=6
x=6 
titik potong (6,0)
Titik potong sumbu y (x=0) 
0 + y=6
y=6
titik potong (0,6)
Tarik garis yang melewati kedua titik maka didapatkan garis seperti yg tergambar dengan garis warna biru pada diagram kartesius di bawah.

Garis 2x + y=8
Titik potong sumbu x ( y=0)
2x + 0=8
2x=8 
x=4
titik potong (4,0)
Titik potong sumbu y (x=0) 
2(0) + y=8
y=8
titik potong (0,8)
Tarik garis yang melewati kedua titik maka didapatkan garis seperti yg tergambar dengan garis warna merah pada diagram kartesius di bawah.

Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
SPLDV Metode Grafik

Kedua garis yang telah digambar berpotongan pada titik (2,4). Maka penyelesaian dari sistem persamaan linear tersebut adalah (2,4) yang artinya nilai x=2 dan nilai y=4.

b. Garis 3x + 2y=12 
Titik potong sumbu x ( y=0)
3x + 2(0)=12
3x=12
x=4 
titik potong (4,0)
Titik potong sumbu y (x=0) 
3(0) + 2y=12
2y=12
y=6
titik potong (0,6)
Pada gambar di bawah ditunjukkan dengan garis biru



Garis  x + 2y=8
Titik potong sumbu x ( y=0)
x + 2(0)=8
x=8 
titik potong (8,0)
Titik potong sumbu y (x=0) 
0 + 2y=8
2y=8
y=4
titik potong (0,4)
Pada gambar dibawah ditunjukkan dengan garis merah


Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
SPLDV Metode Grafik

Kedua garis yang telah digambar berpotongan pada titik (2,3). Maka penyelesaian dari sistem persamaan linear tersebut adalah (2,3) yang artinya nilai x=2 dan nilai y=3.

2. Metode Substitusi

Metode Substitusi adalah suatu metode mencari penyelesaian persamaan dengan cara mensubstitusi (mengganti) salah satu variabelnya dengan persamaan lain ataupun dengan nilai yang sudah diketahui. 

contoh :
a. 3x + y=0 dan 2x – 3y=11
b. 4x + 3y=6 dan 2x – y=3
c. 3x+ 4y=24 dan 5x + 2y=26

Jawab :
a. Pilih salah satu persamaan yang akan kita substitusi ke persamaan lain. Lalu ubah salah satu variabelnya menjadi bentuk persamaan ekuivalen.
Kita pilih persamaan 3x + y=0
Ubah dengan memindahkan 3x ke ruas kanan sehingga bentuknya menjadi
y=- 3x

Substitusi nilai y ke persamaan yang lain
2x - 3y=11
2x - 3 (-3x)=11
2x + 9x=11
11x=11
x=1

Substitusi nilai x ke salah satu persamaan yang kita inginkan
2x - 3y=11
2(1) - 3y=11
2 - 3y=11
- 3y=11 - 2 
- 3y=9
    y=9/-3
    y=-3 

Penyelesaian (1,-3)

b. 4x + 3y=6 dan 2x – y=3
Misalkan dipilih 2x - y=3
2x - y=3
    - y=3 - 2x
      y=2x - 3 

Substitusi ke persamaan 4x + 3y=6
4x + 3(2x - 3)=6
    4x + 6x - 9=6
              10x=6 + 9
              10x=15
                 x=15/10=1½

Substitusi nilai x ke salah satu persamaan
     2x - y=3
2(1½) - y=3
       3 - y=3
          - y=3 - 3
          - y=0
            y=0

Penyelesaian (1½, 0)

c. 3x + 4y=24 dan 5x + 2y=26
Misalkan dipilih persamaan 5x + 2y=26
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
penyelesaian


Substitusi ke persamaan 3x + 4y=24

https://intitute.blogspot.com/
Penyelesaian

Substitusi nilai x ke salah satu persamaan
   5x + 2y=26
5(4) + 2y=26
   20 + 2y=26
          2y=26 - 20
          2y=6
           y=6/3=2

Penyelesaiannya adalah (4,2)




3. Metode Eliminasi

Metode Eliminasi adalah suatu metode mencari penyelesaian persamaan dengan cara mengeliminasi (menghilangkan) salah satu variabelnya. Menghilangkan variabel adalah dengan cara menyamakan koefisien variabel yang dipilih terlebih dahulu.

contoh : 
a. 4x - 5y=-9 dan 2x + 3y=23
b. 4x - 3y=15 dan -3x + 2y=- 12

Jawab 
a. Jika ingin mengeliminasi variabel x maka samakan koefisien variabel x menjadi KPK dari kedua koefisien. 
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
penyelesaian

Jika koefisien variabel yang dieliminasi bertanda sama (sama-sama negatif atau sama-sama negatif), maka eliminasi dengan cara mengurangi. Tetapi jika koefisien variabel yang ingin dieliminasi berbeda, maka eliminasi dengan cara menjumlah.
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
penyelesaian

Penyelesaiannya adalah (4,5)

b. Eliminasi variabel x
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
penyelesaian

Eliminasi variabel y
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
penyelesaian
Penyelesaiannya adalah (6,3)

4. Metode Eliminasi dan Substitusi

Metode berikut menggunakan eliminasi untuk mendapatkan nilai dari salah satu variabel. Kemudian variabel yang sudah diketahui nilainya disubstitusi ke salah satu persamaan untuk mendapatkan nilai variabel yang lain. 

contoh : 
Tentukan himpunan penyelesaian sistem persamaan 
2x +3y=12 dan 4x -7y=-2

Jawab :
Eliminasi variabel x
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
penyelesaian

Substitusi nilai y ke persamaan 2x + 3y=12
2x + 3(2)=12
2x + 6    =12
2x          =12 -6
2x          =6
x            =6/2=3

Himpunan penyelesaian{(3,2)}

Selain metode-metode penyelesaian di atas, ada beberapa model sistem persamaan linear yang membutuhkan penyelesaian tambahan. Perhatikan beberapa contoh sistem persamaan berikut, tentukan himpunan penyelesaiannya.
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
penyelesaian
Jawab
a. Persamaan kedua berupa pecahan, agar lebih mudah maka kedua ruas dikali dengan KPK penyebutnya agar koefisien variabel berupa bilangan bulat.
½x - ⅓ y=2......... dikali 6
3x - 2y=12

Lanjutkan penyelesaian dengan metode yg telah dibahas sebelumnya, misalnya metode eliminasi.
https://intitute.blogspot.com/
penyelesaian

 Himpunan penyelesaian{(2, -3)}

b. Persamaan pertama dikali 6
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
penyelesaian

Persamaan kedua dikali 4
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
penyelesaian
Lanjutkan penyelesaian dari (I) dan (II)
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
penyelesaian
x - 6y=15
3 - 6y=15
   - 6y=15 -3
   - 6y=12
       y=12/-6 
       y=-2

Himpunan penyelesaian{(3,-2)}

c. Misalkan a=1/x dan b=1/y, maka
persamaan I menjadi  2a + b=6/5
persamaan II menjadi a - 3b=-1/10 → a=3b - 1/10
Substitusi ke 2a + b=6/5
2(3b - 1/10) + b=6/5
6b - 1/5 + b      =6/5
6b + b              =6/5 + 1/5
7b                  =7/5
b                    =1/5
1/y                  =1/5, maka y=5

a=3b - 1/10
a=3(1/5) - 1/10
a=3/5 - 1/10
a=5/10 
a=1/2

1/x=1/2
x    =2

Himpunan penyelesaian{(2,5)}

d. Misalkan a=1/(x+2), b=1/(y+3) maka
3a + 5b=-1/4
  a - 3b=-5/4 → a=3b - 5/4

Substitusi ke 3a + 5b=-1/4
3(3b - 5/4) + 5b=-1/4
9b -15/4 + 5b    =-1/4
9b + 5b            =-1/4 + 15/4
14b                  =14/4
b                    =1/4
1/(y+3)            =1/4
y+3                =4
y                    =4 - 3=1

a=3b - 5/4
a=3(1/4) - 5/4
a=3/4 - 5/4
a=-2/4 
a=-1/2

1/(x+2)=-1/2
x + 2    =-2
x        =-2 - 2
x        =-4

Himpunan penyelesaian{(-4,1)}

Contoh soal cerita 


1. Harga3 pensil dan 2 buku tulis adalah Rp5.100,00. Sedangkan harga 2 pensil dan 4buku tulis adalah Rp7.400,00. Model matematika yang tepat untuk pernyataantersebut adalah….

Jawab :
Misalkan hal yang diketahui menjadi variabel yang sesuai, misalnya x dan y, a dan b, p dan q dan sebagainya. Untuk menjawab soal ini kita misalkan pensil dengan p dan buku dengan b.
 3 pensil dan 2 buku tulis adalah Rp5.100,00
3p + 2b=5.100
2 pensil dan 4 buku tulis adalah Rp7.400,00
⇒ 2p + 4b=7.400
bisa disederhanakan dengan sama-sama dibagi 2
p + 2b=3.700




2. Jika harga2 buah baju dan 1 kaos adalah Rp.170.000,00. Sedangkan harga 1 baju dan 3 kaos adalahRp.185.000,00. Harga 3 baju dan 2 kaos adalah.....

Jawab :
Misalkan baju=b dan kaos=k
Sistem persamaan linear :
2b +   k=170.000
  b + 3k=185.000


Maka harga 1 baju adalah Rp 65.000,00 dan harga 1 kaos Rp 40.000,00.
Harga 3 baju dan 2 kaos adalah
3b + 2k=3(65.000) + 2 (40.000)
          =195.000 + 80.000
          =Rp 275.000,00

3. Keliling sebuah persegi panjang sama dengan 44 cm. Jika lebarnya 6 cm lebih pendek dari panjangnya, Tentukan luas dari persegi panjang tersebut.

Jawab :
Rumus keliling=2 (p + l)=2p + 2l, maka
2p + 2l=44
  p -   l=6 ⇒ p=6 + l

2p + 2l=44
2(6 + l) + 2l=44
12 + 2l + 2l=44
4l=44 -12
4l=32
  l=8 cm

p=6 + l
p=6 + 8=14 cm

Luas=p x l
      =14 cm x 8 cm
      =112 cm²



4.Bibi menjual dua jenis kue yaitu risol dan bolu. Keranjang berdagangnya hanya dapatmemuat 40 buah kue. Harga modal risol adalah RP 1.500,00 perbuah, sedangkanharga modal bolu adalah Rp 2.000,00. Modal yang ia keluarkan adalah Rp72.000,00. Berapa pendapatan Bibi jika penjualan risol untungnya Rp 400,00 perbuah dan bolu memberikan untung Rp 500,00 perbuah?

Jawab :
Misalkan risol=a dan bolu=b
jumlah kue=40 ⇒ a + b=40
modal kue ⇒ 1.500a + 2.000b=72.000 (sederhanakan dengan dibagi 500)
              ⇒ 3a + 4b=144


Jumlah risol yang dijual adalah 16 buah dan bolu 24 buah.
Keuntungan yang diperoleh adalah
500a + 500b=400(16) + 500(24)
                  =6.400 + 12.000
                  =Rp 18.400,00 

Demikian materi Sistem Persamaan Linear Dua Variabel dan berberapa contoh soal serta pembahasan yang diberikan Bimbel Diah Jakarta Timur. Semoga dapat membantu untuk lebih memahami. 

https://www.radarhot.com/2018/11/sistem-persamaan-linear-dua-variabel.html

Peta Lokasi Bimbel Jakarta Timur

  1. Matematika
  2. IPA
  3. Fisika
  4. Kimia
  5. Biologi
  6. SD
  7. SMP
  8. SMA
  9. PAT/PAS/UAS
  10. UN/UNBK/USBN
  11. UTS/PTS
  12. Pelajaran IPA Kimia Stoikiometri
  13. Pelajaran Matematika Soal PAT Kelas 8
  14. Pelajaran Matematika Soal PAT Kelas 7
  15. Pelajaran Matematika Soal UAS Kelas 8
  16. Pelajaran Matematika Soal UAS kelas 7
  17. Pelajaran Matematika Soal UAS Kelas 5
  18. Pelajaran Matematika Soal UAS Kelas 6
  19. Pelajaran Matematika Soal UAS Kelas 4
  20. Pelajaran IPA Fisika Suhu Dan Pemuaian
  21. Sistem Persamaan Linear Dua Variabel
  22. Pelajaran IPA Fisika Fluida Statis
  23. Pelajaran Matematika Turunan Fungsi
  24. Gradien dan Persamaan Garis Lurus
  25. Pelajaran Matematika Bangun Ruang Sisi Datar
  26. Pelajaran Matematika Bangun Ruang Sisi Lengkung
  27. Pelajaran Matematika Aritmatika Sosial
  28. Persamaan Dan Pertidaksamaan Linear Nilai Mutlak Satu Variabel
  29. Pelajaran IPA Fisika Vektor dan Skalar
  30. Pelajaran Matematika tentang HIMPUNAN
  31. Pelajaran Matematika Pertidaksamaan Irasional
  32. Sistem Persamaan Linear dan Kuadrat
  33. Pelajaran Matematika Limit Fungsi Aljabar
  34. Pelajaran Matematika Pertidaksamaan Rasional
  35. Pelajaran Matematika Pertidaksamaan Kuadrat
  36. Pelajaran Matematika IPA Satuan Berat dan Massa
  37. Pelajaran Matematika IPA Satuan Ukuran Waktu
  38. Satuan Ukuran Jumlah dan Satuan Pengukuran
  39. Pelajaran IPA Fisika Arus bolak-balik (AC)
  40. Volume dan Luas Permukaan Bangun Ruang Gabungan
  41. Pelajaran Matematika Transformasi Geometri
  42. Pelajaran IPA Klasifikasi Materi dan Perubahannya
  43. Pelajaran Matematika Bentuk Aljabar
  44. Pelajaran Matematika Grafik Fungsi Kuadrat
  45. Pelajaran IPA Fisika Gerak Parabola
  46. Pelajaran IPA Gerak Melingkar Beraturan
  47. Pelajaran Luas Bangun Datar Gabungan Lingkaran
  48. Pelajaran Matematika Fungsi Komposisi Dan Fungsi Invers
  49. Pelajaran IPA Biologi Pewarisan Sifat (Hereditas)
  50. Pelajaran IPA Biologi Klasifikasi Mahluk Hidup
  51. Pelajaran Matematika Unsur unsur lingkaran
  52. Pelajaran IPA Kimia MOLALITAS DAN FRAKSI MOL
  53. Pelajaran IPA Fisika Cahaya Dan Alat Optik
  54. Pelajaran IPA Fisika tentang BUNYI
  55. Pelajaran IPA dan Fisika Getaran Dan Gelombang
  56. Pelajaran Matematika Soal PAT Kelas 9
  57. Pelajaran IPA Fisika Kemagnetan
  58. Pelajaran IPA Fisika tentang TEKANAN
  59. Panjang Busur, Luas Juring Dan Luas Tembereng
  60. Pelajaran Matematika Soal PTS Kelas 8
  61. Pelajaran Matematika Soal Try Out UNBK SMP
  62. Sudut Pusat Dan Sudut Keliling Lingkaran
  63. Pelajaran Matematika Bilangan Bulat
  64. Pelajaran Matematika Limit Trigonometri
  65. Pelajaran Matematika PROGRAM LINEAR
  66. Pelajaran Matematika DIMENSI TIGA
  67. Pelajaran Matematika Soal TryOut USBN untuk SD
  68. Pelajaran Matematika 175 Soal Latihan UN untuk SMP
  69. Pelajaran Matematika Soal UAS Kelas 10
  70. Pelajaran Matematika Soal UAS Kelas 9
  71. Pelajaran IPA Fisika Fluida Dinamis
  72. Pelajaran Matematika Matriks
  73. Pelajaran Matematika Trigonometri Analitika
  74. Pelajaran IPA Fisika Dinamika Rotasi
  75. Pelajaran Matematika Fungsi Trigonometri
  76. Pelajaran Matematika Notasi Sigma
  77. Pelajaran Matematika Logika Matematika
  78. Pelajaran Matematika VEKTOR
  79. Pelajaran Matematika Segiempat dan Segitiga
  80. Pelajaran Matematika Peluang (Probabilitas)
  81. Pelajaran Soal Latihan Ujian Sekolah IPA SD
  82. Rumus Kimia Dan Nomenklatur Senyawa Sederhana
  83. Pelajaran Kimia Larutan Elektrolit dan Reaksi Redoks
  84. Pelajaran IPA Fisika tentang Gravitasi
  85. Hukum Gerak Newton dan Dinamika Partikel
  86. Pelajaran Matematika Kubus dan Balok
  87. Pelajaran Sistem Organisasi Kehidupan Mahluk Hidup
  88. Pelajaran Matematika Pengolahan Data
  89. Pelajaran Matematika Perbandingan Trigonometri
  90. Pelajaran IPA FIsika Energi Dan Daya Listrik
  91. Pelajaran Matematika Bangun Ruang
  92. Pelajaran Matematika FPB dan KPK
  93. Pelajaran Matematika Integral Trigonometri
  94. Pelajaran Matematika Gradien Garis dan Sifat-sifat Gradien
  95. Pelajaran IPA FIsika Listrik Dinamis
  96. Pelajaran Matematika Soal UTS/PTS Kelas 4
  97. Pelajaran Matematika Soal UTS/PTS Kelas 6
  98. Pelajaran Matematika Luas Dan Keliling Lingkaran
  99. Pelajaran Matematika Menghitung Rata-rata (Mean)
  100. Pelajaran Matematika Soal UTS/PTS Kelas 9
  101. Pelajaran IPA Soal UTS/PTS Kelas 8
  102. Pelajaran Matematika Soal UTS/PTS Kelas 8
  103. Pelajaran Matematika Fungsi Kuadrat
  104. Pelajaran Matematika Median Dan Kuartil
  105. Pelajaran Matematika Statistika
  106. Pelajaran IPA Fisika Gerak dan Gaya
  107. Pelajaran IPA Fisika Usaha Dan Pesawat Sederhana
  108. Pelajaran IPA Biologi Sistem Gerak Pada Manusia
  109. Pelajaran IPA Biologi Gerak pada Tumbuhan
  110. Pelajaran Matematika Pembulatan Dan Penaksiran
  111. Pelajaran Matematika Operasi Hitung Pecahan
  112. Pelajaran Matematika Relasi Dan Fungsi
  113. Pelajaran Matematika Persamaan Kuadrat
  114. Pelajaran Matematika Turunan Fungsi Trigonometri
  115. Pelajaran Matematika Logaritma
  116. Cara Menghitung Akar Pangkat Dua Dan Akar Pangkat Tiga
  117. Cara Menghitung Cepat Perkalian Bilangan Belasan
  118. Pelajaran Matematika Fungsi Eksponen
  119. Keindahan Matematika Yang Menakjubkan
  120. Pelajaran Matematika 150 Soal Latihan USBN UNTUK SD
  121. Pelajaran Matematika Operasi Hitung Campuran
  122. Macam-Macam Pola Bilangan
  123. Pelajaran Matematika Cerita Bilangan Bulat
  124. Pelajaran Matematika menghitung persegi
  125. Pelajaran IPA Fisika Listrik Statis
  126. Menentukan Rumus Barisan Aritmatika Bertingkat
  127. Pelajaran Matematika Perpangkatan dan Bentuk Akar
  128. Pelajaran Matematika Teorema Phytagoras
  129. Pelajaran Matematika Soal PAS Kelas 5
  130. Pelajaran Matematika Soal PAS Kelas 4
  131. Pelajaran Matematika Kekongruenan dan Kesebangunan
  132. Sistem Persamaan Linear Tiga Variabel
  133. Perbandingan Senilai dan Perbandingan Berbalik Nilai
  134. Pelajaran Matematika Garis Singgung Lingkaran
  135. Luas dan Keliling Persegi dan Persegi Panjang
  136. Pelajaran Matematika Garis Dan Sudut
  137. Pelajaran IPA Kimia HIDROKARBON
  138. Hubungan Satuan Waktu, Panjang, Berat dan Kuantitas
  139. Pelajaran Matematika Bangun Datar
  140. Pelajaran Matematika Perbandingan Dan Skala
  141. Pelajaran IPA Fisika Suhu Dan Kalor
  142. Pelajaran IPA Fisika BESARAN DAN SATUAN
  143. Pelajaran Matematika DEBIT
  144. Pelajaran IPA Fisika Gerak Lurus
  145. Menghitung Luas Segi-n Beraturan Dengan Trigonometri
  146. Pelajaran Matematika Barisan Dan Deret
  147. Aturan Sinus, Cosinus dan Luas Segitiga